Eng | Рус | Буряад
 На главную 
 Новости 
 Районы Бурятии 
 О проекте 

Главная / Каталог книг / Электронная библиотека / Водные ресурсы

Разделы сайта

Запомнить меня на этом компьютере
  Забыли свой пароль?
  Регистрация

Погода

 

Законодательство


КонсультантПлюс

Гарант

Кодекс

Российская газета: Документы



Не менее полезные ссылки 


НОЦ Байкал

Галазий Г. Байкал в вопросах и ответах

Природа Байкала

Природа России: национальный портал

Министерство природных ресурсов РФ


Рейтинг@Mail.ru

  

Яндекс цитирования Яндекс.Метрика

БАЛЬНЕОЛОГИЧЕСКИЕ РЕСУРСЫ ТЕРМ СЕВЕРО-ВОСТОЧНОЙ ЧАСТИ БАЙКАЛЬСКОЙ РИФТОВОЙ ЗОНЫ

Автор:  Плюснин А.М.
Чернявский А.К.
Астахов Н.Е.
Источник:  Новые технологии добычи и переработки природного сырья в условиях экологических ограничений: Материалы Всероссийской научно-технической конференции с международным участием 26-30 июля 2004 г., г. Улан-Удэ. – Улан-Удэ, 2004. – С.117-120.

Термальные воды в гранитоидах широко распространены как в России, так и за рубежом. Они характеризуются рН>7 и относительно низкой минерализацией. Среди катионов обычно преобладает Na, а в составе анионов гидрокарбонат. Они характеризуются повышенными содержаниями F, Si, a также микроэлементами Li, Rb, Cs, Ва, Ge, Mo, U. Заметные различия в распределении химических компонентов в термах связаны с градиентом температурного поля и составом вмещающих пород. В Забайкалье такие воды распространены в пределах Байкальского рифта, в основном в его северо­восточной и северной частях.

Одной из наиболее крупных суходольных впадин Байкальской рифтовой зоны, где имеются вы­ходы термальных вод, является Баргузинская долина. Она протягивается субпараллельно северной части Байкала на 190-200 км, ширина ее составляет 13-34 км. С северо-запада долина ограничена вы­соким Баргузинским хребтом, с юго-востока - более низким Икатским, на юго-западе замыкается Ша­манским отрогом, а на северо-востоке - соединением Баргузинского, Икатского, Северо- и Южно-Муйского хребтов. Часть термальных источников разгружается в пределах восточных склонов Баргу­зинского хребта - Алла, Кучигер, Умхэй; другая часть - на западных склонах Икатского хребта - Гар-га, Гусиха, Сея, Алга; третья группа источников разгружается на восточном побережье Байкала - Го-рячинск, Давша, Змеиный, Кулиные болота. Все источники представляют собой гидротермы с преоб­ладанием в газовом составе азота. Водовмещающими породами являются трещиноватые разнозерни-стые граниты или гранодиориты и брекчированные породы. Азотные гидротермы располагаются только в районах со значительной величиной теплового потока, преимущественно в бортовых частях впадин. Для них характерна приуроченность к пересечению глубинных поперечных разломов фунда­мента с глубинными активизированными зонами, расположенными параллельно крупным складчатым структурам Байкальской рифтовой зоны. Для Баргузинской впадины характерны две системы разло­мов. По ее западному борту, вдоль Баргузинского хребта, проходит Западно-Баргузинский разлом, в пределах которого разгружаются Аллинский, Кучигерский источники. С Восточно-Баргузинским раз­ломом, проходящим вдоль восточного борта впадины, ограниченного Икатским хребтом, связаны Ал-гинский, Инский, Гаргинский и Сеюйский источники. Западно-Баргузинский разлом характеризуется крутым падением трещиноватости к юго-востоку, в пределах Восточно-Баргузинского разлома трещи-новатость имеет более пологое залегание с общим падением к северо-востоку. Источники Кулиные болота, Змеиный, Давшинский и др. связаны с Восточно-Байкальским разломом. Максимальный теп­ловой поток на рассматриваемой территории находится в северной части Баргузинской впадины в р-не Аллинского, Кучигерского, Умхэйского источников и на побережье Байкала в районе Горячинского источника.

Холодные метеогенные воды (атмосферные, речные, грунтовые), инфильтруясь по открытым системам трещин в глубокие (2000-3000 м и более) горизонты недр, нагреваются до 70-100 °С. Нали­чие зон интенсивной трещиноватости в полосе основного водовыводящего разлома способствует рас­теканию термальной воды в приразломном коллекторе и формированию аномально повышенного теп­лового поля, которое имеет вид эллипса, вытянутого в субширотном направлении вдоль разлома (Лы-сак, Зорин, 1976). В большинстве случаев конвективные струи гидротерм на своем пути вверх смеши­ваются с холодными фунтовыми водами и теряют значительную часть запасов тепла. В зависимости от глубины формирования и степени смешения с холодными водами температура термальных источ-

ников колеблется от 20 до 78 °С. Дебит источников также изменяется в значительных пределах - от нескольких до 40-50 дм3/с. Месторождения трещинно-жильного типа являются скоплениями мине­ральной воды куполообразной формы, окруженные со всех сторон пресными водами.

Азотные гидротермы являются термами наиболее глубокого зарождения, считается, что мини­мальная глубина формирования высокотемпературных (70-80 °С) современных гидротерм 1,5-6 км, а максимальная может достигать десятков километров. Температура воды зависит от того вытекает ли она непосредственно из трещин в коренных породах, как, например, на Аллинском (74-77 °С), Гаргин-ском (76 °С), Горячинском (54 °С) или проходит через толщу рыхлых озерно-аллювиальных и болот­ных отложений (Змеиный - 45 °С, Кулиные болота - 40 °С, Алгинский - 20 С).

Несмотря на то, что источники разгружаются в поле распространения гранитов отношения изо­топов стронция в воде источников составляет всего 0,70573-0,70812 (рис. 1). Тогда как, для терм&чь-ных вод, связанных с гранитами, эта величина чаще всего больше 0,710. В Байкале это отношение близко значению в мировом океане и составляет 0,70881, в атмосферных осадках региона - 0,7088 (Демонтерова и др., 2003).                                                                                              j


На наш взгляд низкое значение отношения изотопов стронция может быть связано с влиянием эндогенных потоков вещества, поступающего по глубинным разломам или с подтоком вод контакти­рующих с мантийными образованиями. Низкие значения изотопов стронция указывают на значитель­ную глубинность разломов. Наиболее глубинными по изотопным данным являются Горячинский и Гусихинский источники, наименее глубинными из рассмотренных источников являются Алгинский, Инский и Сеюйский.

Термальные воды характеризуются сложным газовым, макро- и микрокомпонентным составом, физико-химическими свойствами, высокой температурой. Этому способствует высокая проницаемость зон разломов, глубина их заложения, разнообразие геохимического состава вмещающих пород. Среди наиболее важных бальнеологических факторов азотных терм выделяются: температура, содержание кремниевой кислоты, щелочных элементов, радона и разнообразие микроэлементного состава.

Рассматривая зависимость между температурой и химическим составом можно констатировать, что такая зависимость существует для кремния. От установленного тренда относительно повышенны­ми значения кремния выделяются Инский, Аллинский и Кучегерский источники, а относительно за­ниженными - Гаргинский и Гусихинский. Занижение содержания кремния, относительно теоретиче­ского, на двух последних источниках объясняется тем, что при выходе воды на поверхность происхо­дит отложение минеральных солей, в состав которых входят кремнистые соединения. Установлено, что более высокие температуры свойственны термам сульфатного состава, но строгой зависимости этих параметров не обнаружено. Весьма слабая зависимость от температуры наблюдается и для фтора, высокое содержание которого характерно для многих источников. Поступление фтора и сульфата в раствор, вероятно, связано с геохимической специализацией вмещающих пород и степенью метамор-физации химического состава гидротерм. Гидротермы с высоким содержанием сульфата формируются в пределах Икатского хребта, как правило, сульфат абсолютно преобладает в анионном составе этих гидротерм.


Азотные слабоминерализованные термы в целом характеризуются слабой радиоактивностью. Концентрация радона в этих водах колеблется в пределах 0,5-3 эман. Но в воде Алгинского и Гаргин-ского источников содержание радона оказалось довольно высоким. Накопление радона в термальных водах в значительной степени зависит от эманирующей способности горных пород, размеров трещин и скорости движения самих вод. Разгрузка Алгинского источника происходит в заболоченной местно­сти, для лечения, вероятно, могут использоваться также и грязи. Кроме этого в районе Алгинского ис­точника расположены многочисленные содовые и сульфатные минеральные озера, воды которых также могут использоваться в бальнеологических целях.


В микроэлементном составе преобладает стронций, литий, рубидий, цезий. Концентрация стронция в термальных водах, формирующихся в пределах Икатского хребта, на один-два математи­ческих порядка выше, чем в других источниках Баргузинской долины - на Гаргинском - 2890 10' г/л, Инском - 2370 10"6 г/л, на Алтайском источнике его содержание 1520 10"6 г/л, на Гусихинском - 1090 10" г/л. Основным источником поступления стронция в подземные воды считается растворение стронцийсодержащих минералов осадочных пород. Стронций поступает в гидротермы БРЗ за счет процессов взаимодействия в системе вода-порода.

Высокие содержания лития отмечаются в Гаргинском (1200 10"6 г/л), Инском (260 10"6 г/л), Гу­сихинском (160 10'6 г/л), Аллинском (140 10'6 г/л) источниках.

В водах источников наблюдается повышенное, по сравнению с фоновым, содержание рубидия, особенно в воде Гаргинского источника (87,2 10"6 г/л), Гусихинского (56 10'6 г/л), Инского (35 10'6 г/л). Основным источником рубидия считается процесс его мобилизации из вмещающих изверженных по­род. Известно, что рубидий в виде изоморфной примеси рассеян в различных силикатных, преимуще­ственно калийсодержащих минералах (калиевый полевой шпат и др.).

Содержание цезия превышает, фоновое в воде Гррячинского (5,4 10"6 г/л), Гусихинского (6,5 10"6 г/л), Инского (12 10" г/л) источников, максимальная его концентрация в воде Гаргинского источника (26 10" г/л). Первоисточником цезия в термальных и углекислых водах могут являться не только алю-мосиликатные вмещающие породы, главным образом гранитного ряда, но и глубинные эманации.

Из тяжелых металлов водах источников обнаруживаются хром, никель, медь, вольфрам, свинец.

В таблице 2 приведены микроэлементы, которые присутствуют в составе вод источников в от­носительно повышенных концентрациях. Из анализа представленных результатов можно заключить, что наибольшим разнообразием микроэлементного состава характеризуются минеральные источники разгружающиеся в юго-восточном борту Баргузинской долины jt в пределах отрогов Икатского хреб­та.


ВЫВОДЫ

-     Максимальный тепловой поток на рассматриваемой территории находится в северной части Баргу­зинской впадины в районе разгрузки Аллинского, Кучигерского, Умхэйского источников, но тем­пература воды в этих источниках различается, что связано с разбавлением трещинно-жильных вод поверхностными и грунтовыми водами.

-     Наиболее глубинными, по результатам исследования изотопии стронция, являются Горячинский и Гусихинский источники, наименее глубинными из рассмотренных источников являются Алгин-ский, Инский и Сеюйский.

-     Наибольшим разнообразием микроэлементного состава характеризуются минеральные источники, разгружающиеся в юго-восточном борту Баргузинской долины и в пределах отрогов Икатского хребта.

-    Современными методами анализа измерены содержания радона в термах Баргузинской долины, установлено повышенное содержание радона в воде Алгинского и Гаргинского термальных источ­ников.

ЛИТЕРАТУРА

1.      Демонтерова Е.И., Бадминов П.С., Иванов А.В., Оргильянов А.И., Рассказов СВ., Писарский Б.И. Источни­ки растворенного вещества термальных вод в районе проявления четвертичного, вулканизма Восточного Саяна: вариации 87Sr/86Sr в травертинах. Изотопная геохронология в решении проблем геодинамики и рудо-

,,,.,  генеза. С-Петербург: 2003. С.142-144.

2.      Лысак СВ., Зорин Ю.А. Геотермическое поле Байкальской рифтовой зоны. М.: Наука. 1976.92 с.

Назад в раздел






СПРАВОЧНАЯ СЛУЖБА

Национальная библиотека Республики Бурятия

Научно-практический журнал Библиопанорама

Охрана озера Байкал 
Росгеолфонд. Сибирское отделение   
Туризм и отдых в Бурятии 
Официальный портал органов государственной власти Республики Бурятия 





Copyright 2006, Национальная библиотека Республики Бурятия
Информационный портал - Байкал-Lake